Building Artificial CPGs with Asymmetric Hopfield Networks

نویسندگان

  • Felipe Maia Galvão França
  • Zhijun Yang
چکیده

This paper presents a novel approach to the emulation of locomotor central pattern generators (CPGs) of legged animals. Based on Scheduling by Multiple Edge Reversal (SMER), a simple but powerful distributed algorithm, it is shown how oscillatory building blocks (OBBs) can be created and how OBB-based networks can be implemented as asymmetric Hopfield-like neural networks for the generation of complicatedly coordinated rhythmic patterns observed among pairs of biological motor neurons working during different gait patterns. It is also presented how a generalized CPG model mapped into such Hopfield-like networks possess some charming properties on the retrieval of a whole range of different preprogrammed gait patterns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Continuous-Time Asymmetric Hopfield Networks for Memory Retrieval

A novel m energy functions method is adopted to analyze the retrieval property of continuous-time asymmetric Hopfield neural networks. Sufficient conditions for the local and global asymptotic stability of the network are proposed. Moreover, an efficient systematic procedure for designing asymmetric networks is proposed, and a given set of states can be assigned as locally asymptotically stable...

متن کامل

Some Remarkable Properties of a Hopfield Neural Network with Time Delay

It is known that an analog Hopfield neural network with time delay can generate the outputs which are similar to the human electroencephalogram. To gain deeper insights into the mechanisms of rhythm generation by the Hopfield neural networks and to study the effects of noise on their activities, we investigated the behaviors of the networks with symmetric and asymmetric interneuron connections....

متن کامل

Modeling biological rhythmic patterns using asymmetric Hopfield neural networks

In this report we present a novel approach to the modelling of the collective behaviour of inhibitory neuronal networks through combining Hopfield neural networks with a distributed algorithm of Scheduling by Multiple Edge Reversal (SMER). We show that this new model can conveniently replicate sophisticatedly coordinated, spatio-temporal dynamics of biological rhythms, and have been applied to ...

متن کامل

OTA Based Neural Network Architectures with On-Chip Tuning of Synapses

We propose and analyze analog VLSI implementations of neural networks in which both the neural cells and the synapses are realized using Operational Transconductance Amplifiers (OTAs). These circuits have inherent advantages of immunity to noise, very high input/output impedances, differential architecture with automatic inversion, and density. An efficient on-chip technique for weight adaptati...

متن کامل

Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design

The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000